آنتروپی ترمودینامیک

قانون دوم ترمودینامیک و آنتروپی

قانون اول ترمودینامیک به معرفی انرژی درونی ، U ، منجر شد. این کمیت تابع حالتی است که بر مبنای آن ، مجاز بودن یک فرآیند مورد قضاوت قرار می‌گیرد و ‌بیان می‌دارد که فقط تحولاتی مجاز است که انرژی داخلی کل سیستم منزوی ، ثابت بماند. قانونی که ملاک خودبخودی بودن را مشخص می‌سازد (قانون دوم ترمودینامیک) ، برحسب تابع حالت دیگری بیان می‌شود. این تابع حالت ، آنتروپی ، S ، است.

ملاحظه خواهیم کرد که بر مبنای آنتروپی قضاوت می‌کنیم که آیا یک حالت بطور خودبخودی از حالت دیگری قابل حصول می‌باشد. در قانون اول با استفاده از انرژی داخلی ، تحولات مجاز مشخص می‌شود (آنهایی که انرژی ثابت دارند). از قانون دوم با استفاده از آنتروپی ، تحولات خودبخودی از بین همان فرآیندهایی مشخص می‌شود که بر مبنای قانون اول مجاز می‌باشد.

بیان قانون دوم

آنتروپی سیستم منزوی در یک فرآیند خودبخودی افزایش می‌یابد:

که
، آنتروپی تمام قسمتهای سیستم منزوی می‌باشد.

از آنجایی که فرآیندهای برگشت ناپذیر (مانند سرد شدن شیئی تا دمای محیط و انبساط آزاد گازها) خودبخودی است، در نتیجه همه آنها با افزایش آنتروپی توام می‌باشند. این نکته را می‌توان به این صورت مطرح کرد که در فرایندهای برگشت ناپذیر آنتروپی تولید می‌شود. از طرف دیگر ، در فرایند برگشت پذیر توازن وجود دارد، یعنی سیستم با محیط در هر مرحله در تعادل است. هر مرحله بسیار کوچک در این مسیر برگشت پذیر بوده و پخش نامنظم انرژی روی نمی‌دهد و در نتیجه آنتروپی افزایش نمی‌یابد، یعنی در فرآیند برگشت پذیر آنتروپی ایجاد نمی‌شود. آنتروپی در فرآیندهای برگشت پذیر از بخشی از سیستم منزوی به بخش دیگری منتقل می‌گردد.

تعریف آماری آنتروپی

بر مبنای تعریف آماری ، فرض می‌شود که در واقع می‌توانیم با استفاده از فرمول ارائه شده توسط لوودیگ بولتزمن (Ludwing Boltzmann) در سال 1896 ، آنتروپی را محاسبه کنیم:



کهk، ثابت بولتزمن است:

این ثابت به صورت به ثابت گاز ربط دارد. کمیت W تعداد راههای متفاوتی است که سیستم می‌تواند با توزیع اتمها یا مولکولها بر روی حالتهای در دسترس به انرژی خاصی برسد. واحد آنتروپی با واحد k یکسان است. در نتیجه واحد آنتروپی مولی ، می‌باشد؛ (این با واحد R و ظرفیت گرمایی یکی است.)

تعریف ترمودینامیکی انرژی

در روش ترمودینامیکی ، تمرکز بر روی تغییر آنتروپی در طول یک فرایند ، dS ، می‌باشد، نه مقدار معلق S. تعریف dS بر این مبناست که می‌توان میزان پخش انرژی را به انرژی مبادله شده به صورت گرما ، در حین انجام فرایند ربط داد. تعاریف آماری و ترمودینامیکی با هم سازگار می‌باشند. در شیمی فیزیک این یک لحظه نشاط آور است که بین خواص توده‌ای (که مورد نظر ترمودینامیک است) و خواص اتمها یک ارتباط برقرار شود.

 

تغییر آنتروپی محیط

تغییر آنتروپی محیط را با علامت 'dS نشان می‌دهیم. علامت پریم مربوط به محیط سیستم واقعی که در سیستم منزوی بزرگ قرار دارد، مربوط می‌شود. محیط را با یک مخزن حرارتی بزرگ (عملا یک حمام آب) نشان می‌دهیم که در دمای T باقی می‌ماند. مقدار گرمای منتقل شده به مخزن در اثر انجام کار مانند سقوط یک وزنه را با 'dq نشان می‌دهیم که این گرما به مخزن منتقل می‌شود. هرچه مقدار گرمای بیشتری به مخزن منتقل شود، حرکت حرارتی بیشتری هم در آن ایجاد می‌شود و از این رو ، پخش انرژی به میزان بیشتری اتفاق می‌افتد. از این نکته استنباط می‌شود که:



اگر گرما به مخزن سردی منتقل شود، کیفیت انرژی نسبت به موردی که آن گرما به مخزن گرمتری داده شود، انحطاط بیشتری خواهد داشت. در مورد اخیر می‌توانیم در اثر جاری شدن گرمای 'dq از یک مخزن سرد به مخزن سردتری کار استخراج کنیم، اما اگر این گرما مستقما به مخزن سردتر منتقل شود، استخراج چنین کاری امکان پذیر نیست.

نتیجه می‌گیریم که اگر مقدار معین انرژی به صورت گرما به مخزن گرمی داده شود، آنتروپی کمتری ایجاد می‌شود تا اینکه آن انرژی به مخزن سردی داده شود. ساده‌ترین راهی که می‌توان این وابستگی دمایی را به حساب آورد، چنین است:



که 'T دمایی است که در آن دما ، انتقال گرما صورت گرفته است. برای یک تغییر قابل اندازه گیری در دمای ثابت چنین داریم:



وقتی که مقدار زیادی حرکت حرارتی در دمای پایین ایجاد شود، تغییر آنتروپی بزرگی اتفاق می‌افتد. برای فرآیند آدیاباتیک:

0 = 'q وقتی 0 = 'S∆



این نتیجه برای هر فرآیندی ، برگشت پذیر یا برگشت ناپذیر ، صحیح است، تا زمانی که مناطق گرم محلی در محیط ایجاد نشود، یعنی زمانی این نتیجه صحیح است که محیط ، تعادل درونی خود را حفظ کند. اگر مناطقی محلی بوجود آید، انرژی از این مناطق بطور خودبخودی پخش می‌شود و در نتیجه آن آنتروپی تولید می‌شود. موقعی که یک واکنش شیمیایی با تغییر آنتالپی H در سیستمی انجام می‌شود، گرمایی که در فشار ثابت وارد محیط می‌شود، برابر با . بنابراین تغییر آنتروپی محیط برابر است با:

 

سینتیک شیمیایی

 

در حالت کلی سینتیک شیمیایی را می‌توان علم مطالعه سیستمهای ناظر بر تجزیه شیمیایی و یا تغییر حالت مولکولها دانست. به عبارت دیگر سینتیک را می‌توان علم مکمل ترمودینامیک دانسته و سیستمهایی را که توزیع انرژی آنها با زمان تغییر می‌نماید مطالعه کرد. نظریه‌هایی که اثرات متقابل شیمیایی را توجیه می‌کنند بطور گسترده‌ای بر اساس نتایج تجربی پایه گذاری شده‌اند که با روشهای ترمودینامیکی و سینتیکی به دست می‌آیند.

 

نگاه اجمالی

با یک نگرش سطحی می‌توان مشاهده نمود که برخی از واکنشهای شیمیایی آنی بوده و تعدادی کند یا بی‌نهایت کند هستند. همچنین شدت بعضی از واکنشها در آغاز زیاد است، رفته رفته آهسته می‌گردند، برعکس برخی از واکنشها به کندی شروع شده و سپس شتاب می‌گیرند، سینتیک عامل زمان را در واکنشهای شیمیایی مطرح و مورد بحث قرار می‌دهد.

تاریخچه

از نظر تاریخی مطالعه سرعت واکنشها یکی از قدیمی‌ترین موضوعات شیمی فیزیک بوده است. و نزل در سال 1777 سرعت انحلال فلزات در اسیدها را مطالعه کرد. ویلهمی در سال 1850 هیدرولیز بوسیله اسیدها را مورد بررسی قرار داد و به این نتیجه رسید که سرعت واکنش هیدرولیز ساکاروز متناسب با غلظت ساکاروز تجزیه نشده است.

ویلهمی را می‌توان پایه گذار سینتیک نامید. درسال 1862 برتلو و سن ژیل نیز نتایج مشابهی روی هیدرولیز استرها در محیط اسیدی داشتند، سرانجام درسال 1863 گولدبرگ و واگ نتایج فوق را تعمیم داده و به صورت قانون اثر غلظت‌ها بیان کردند.

مطالعات اولیه سینتیک

اولین مطالعات در سینتیک شیمیایی مربوط به اندازه گیری سرعت واکنشها بوده و برای رسیدن به هدف اصلی با توجیه این سرعتها به شناخت مکانیسم کامل واکنش مورد مطالعه پی می‌بریم. البته از آنجا که سرعت اندازه گیری شده یک حالت آماری متوسط مولکولهای شرکت کننده در واکنش می‌باشد، سینتیک شیمیایی اطلاعی از حالت انرژیتیکی یا وضع فضایی مولکولها را بطور جداگانه ارائه نمی‌دهد ولی با این وصف مطالعه جنبشی واکنشهای شیمیایی در تفکیک مکانیسمهای پیچیده به مراحل ساده ، دارای توانایی و قدرت قابل توجهی می‌باشد.

مکانیسم کلی واکنشهای پیچیده‌ای که واکنشگرها تغییرات مرحله‌ای انجام می‌دهند، تنها با مطالعه سینتیکی سرعت یعنی فرایند حاکم بر واکنش از طریق مطالعه سینتیکی قابل تشریح می‌باشد.

استفاده همزمان از عوامل ترمودینامیکی و سینتیکی

ترمودینامیک شیمیایی هم مانند سینتیک شیمیایی شاخه مهمی از شیمی فیزیک است. در ترمودینامیک عامل زمان ، در کار نیست و در آن از تعادل و حالت ابتدایی و انتهایی سیستم بحث می‌شود. بی آنکه از سرعت رسیدن به تعادل سخن گفته شود. در بیشتر موارد عملی اکثر اطلاعات مورد نیاز با استفاده همزمان از عوامل ترمودینامیکی و سینتیکی بدست می‌آید. برای مثال در فرایندهای برای تهیه آمونیاک داریم:




زمانی که واکنش گرمازا باشد طبق اصل لوشاتلیه تهیه آمونیاک در فشار بالا و دمای پایین امکانپذیر است. ولی عملا در دمای سرعت واکنش به اندازه‌ای کند است که به عنوان یک فرایند صنعتی مقرون به صرفه نمی‌باشد. لذا اگر چه در فرایند‌ هابر با استفاده از فشارهای زیاد تعادل در جهت تولید آمونیاک پیشرفت می‌کند، عملا در حضور کاتالیزور و دمای (عوامل ترمودینامیکی) سرعت رسیدن به تعادل به مراتب افزایش می‌یابد. در نتیجه برای مشخص نمودن شرایط انجام این واکنش از عوامل ترمودینامیکی و سینتیکی استفاده می‌شود.

تفاوتهای سینتیک و ترمودینامیک

علم ترمودینامیک بیشتر مبتنی بر تغییر انرژی و آنتروپی است که معمولا همراه با تغییر در سیستم می‌باشد و با استفاده از انرژی آزاد یک واکنش و همچنین ثابت تعادل آن امکان انجام یا عدم انجام یک واکنش شیمیایی را پیش‌بینی می‌کند. اما نتایج ترمودینامیکی به هیچ وجه نمی‌تواند سرعت تغییرات شیمیایی و یا مکانیسم تبدیل واکنش دهنده‌ها اطلاعاتی به ما بدهد. به عنوان مثال اکسیژن و نیتروژن موجود در جو زمین می‌توانند با آب اقیانوسها وارد واکنش شده و اسید نیتریک رقیق تولید کنند.

بر اساس اطلاعات ترمودینامیکی ، این واکنش به صورت خودبه‌خودی می‌تواند انجام شود. اما طبق اطلاعات سینتیکی خوشبختانه سرعت آن خیلی کم می‌باشد. تفاوت مهم دیگر بین سینتیک و ترمودینامیک این است که طبق اصول اساسی ترمودینامیک مقدار ثابت تعادل برای واکنشها مستقل از مسیری است که واکنش دهنده‌ها را به فراورده تبدیل می‌کند اما در سینتیک مسیر واکنش بسیار اهمیت دارد، زیرا کلیه مراحل و مکانیسم واکنشهای شیمیایی را تشکیل می‌دهد.

 


مطالب مشابه :


عکس های ناز عروسکی

وب سایت تخصصی مدیریت صنعتی زارچ. ماه وب سایت تخصصی مدیریت صنعتی




پیش بینی روسیه از آینده ایران...

مدیریت صنعتی زارچ. وب سایت تخصصی مدیریت صنعتی




سرود تصويري الهي و خلاقي

وب سایت تخصصی مدیریت صنعتی زارچ. رسته های تخصصی تمام حقوق اين وب سايت و مطالب آن




رسته های تخصصی نیروی انتظامی

رسته های تخصصی وب سایت تخصصی مدیریت صنعتی زارچ. تمام حقوق اين وب سايت و مطالب آن




آنتروپی ترمودینامیک

وب سایت تخصصی مدیریت صنعتی ای کند است که به عنوان یک فرایند صنعتی مقرون به وب آپلود




بدون شرح های ماه مدرسه...

وب سایت رسمی مسجد مقدس وب سایت تخصصی مدیریت صنعتی زارچ. درباره وب.




برچسب :